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A self-similar processes is a stochastic process {X(t), t \ 0} whose finite-
dimensional distributions have scaling properties, namely for any constant
a > 0, the process

{X(at), t \ 0} (1)

has the same-finite dimensional distributions as

{aHX(t), t \ 0}. (2)

This means that for any t1,..., tn and any x1,..., xn, one has

P{X(at1) [ x1,..., X(atn) [ xn}=P{aHX(t1) [ x1,..., aHX(tn) [ xn}.

The exponent H has various names. It is called the ‘‘exponent’’ or ‘‘index
of self similarity,’’ the ‘‘Hurst exponent’’ or sometimes the ‘‘fractal expo-
nent.’’ The term ‘‘fractal exponent’’ should be avoided because it is not
the paths of X(t) that are self-similar but only the distribution or law of
the process. Consider, for example, Brownian motion {B(t), t \ 0} whose
covariance function is

OB(s), B(t)P=s2 min(s, t),

where s2=OB2(1)P and where O P or O , P denotes the mean value
(mathematical expectation). Since Brownian motion has mean zero,
OB(t)P=0, and is a Gaussian process, its finite-dimensional distributions
are determined by the covariance function, and since, for any a \ 0,

OB(as), B(at)P=as2 min(s, t)=Oa1/2B(s), a1/2B(t)P,



one concludes that Brownian motion is self-similar with H=1/2. Observe
that we have not analyzed the path {B(w, t), t \ 0} for a realization w of
the process. The path {B(w, t), t \ 0} does not have scaling or self-simi-
larity property. If it did, then knowing the value of B(w, t0) at any time t0,
one would be able to derive the values of B(w, at0) at any subsequent time
at0 > t0 with a > 1. The self-similarity exponent H does influence the path
properties, however. For example, the paths of Brownian motion are
Hölder-continuous of order H=1/2, that is

|B(w, s) − B(w, t)| [ C(w) |s − t|c,

for any c < 1/2.
There are a lot of self-similar processes, in fact as many as stationary

processes. Indeed, one can always transform a self-similar process into a
stationary process and vice-versa. Thus one often focuses on H-sssi pro-
cesses, that is, self-similar processes that have also stationary increments.
Brownian motion, for example, is 1/2-sssi. The H-sssi processes are
important in practice because if {X(t), t \ 0} is such a process, then its
increments

Yi=X(i+1) − X(i), i \ 0

form a stationary sequence, which is often used in modeling real-life
phenomena. If X is Brownian motion, then the Yi’s are independent and
identically distributed Gaussian random variables. To obtain less trivial
models, one has to focus on other H-sssi processes X. If we want to main-
tain the Gaussian nature of the process, only the covariance function has
to change. Gaussian H-sssi processes are known as fractional Brownian
motion, or FBM in short. They are denoted {BH(t), t \ 0}, where
0 < H < 1. The covariance function of FBM is

OBH(s), BH(t)P=
s2

2
{|s|2H+|t|2H − |s − t|2H}, (3)

where s2=OB2
H(1)P. The corresponding increments Yi=BH(i+1) − BH(i),

i \ 0 are called fractional Gaussian noise (FGN) and they display long-
range dependence when 1/2 < H < 1:

OYiYi+kP ’ ck2H − 2 as k Q ., (4)
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where ’ means ‘‘asymptotic to’’ ( the ratio of the left and right hand sides
tends to 1) and where c > 0 is a constant. They thus decay slowly at large
lags k and, in fact, the spectral mass at frequency zero is infinite:

C
.

k=−.

OYi, Yi+kP=OY2
i (0)P+2 C

.

k=1
OYi, Yi+kP=., (5)

and the spectral density approaches . as the frequency tends to zero, like a
power function, a phenomena, sometimes called ‘‘1/f noise.’’

Brownian motion does not display long-range dependence. It is FBM
with H=1/2. FBM with H ] 1/2 was invented by Kolmogorov (3) and
rendered popular by Mandelbrot in many articles, in particular Mandelbrot
and Van Ness, (4) where the connection between fractional Brownian
motion and fractional integration was made. In fact, one can represent
FBM as a stochastic integral

BH(t)=F
.

−.

f(t, s) dB(s) (6)

by using a non-random integrand f, suitably chosen (it resembles a power
function). The integration in (6) is with respect to Brownian motion, where
dB(s) can be interpreted as Gaussian white noise. The representation (6) is
useful because it sheds light on the structure of FBM, and, more impor-
tantly, because it opens the door to extensions to the non-Gaussian world.

The extension to the non-Gaussian world can be done by considering
either finite variance or infinite variance processes. The idea, in both cases,
is to extend the integral representation (6) in one case, by considering a
multiple integral, that is

BH(t)=F
.

−.

· · · F
.

−.

f(t, s1,..., sp) dB(s1) · · · dB(sp) (7)

with a suitably chosen f. Such an extension is related to the so-called
‘‘Wiener Chaos.’’ Since an H-sssi process of the type (7) has finite variance,
its covariance is still (3) but its higher moments can be rather complicated,
and in fact, are best described by ‘‘diagram formulas,’’ akin to Feynman
diagrams. The process (7) is clearly not Gaussian when p > 1 because
dB(s1) · · · dB(sp) involves intuitively the product of p Gaussian variables.

Another way to extend H-sssi to the non-Gaussian world is to replace
the Gaussian white noise dB in the stochastic representation (6) of FBM
by so-called ‘‘stable’’ white noise with infinite variance. Recall that if a
random variable Ma has a ‘‘stable’’ distribution, then P{|Ma | > x} & cx−a
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as x Q . where 0 < a < 2 and c > 0 is a constant. One says that Ma is
stable or that Ma has heavy tails (Ma has infinite variance because a < 2).
One can also define a stable white noise dMa(s) and hence consider the
H-sssi process

X(t)=F
.

−.

f(t, s) dMa(s) (8)

where f is suitably chosen. If the noise dMa(s) has a stable distribution
then the resulting process X(t) has also a stable distribution and hence
heavy tails. The monograph of Samorodnitsky and Taqqu (6) offers a sys-
tematic introduction to stable non-Gaussian random processes, including
H-sssi ones.

The following two bibliographical articles, Taqqu (8) and Willinger
et al., (11) may be also be useful. They are a somewhat dated but they are
annotated and point to a large body of literature covering both theory and
applications.

The book by Embrechts and Maejima under review offers a nice
introduction to self similar processes. It is short (111 pages), assumes
notions of probability theory at an introductory graduate level and covers
many topics associated with self-similar processes. It describes the general
properties of H-sssi processes and, in particular, of fractional Brownian
motion. It also includes a number of sections on limit theorems. Limit
theorems are important because self-similarity is an idealized property, and
in practice, many real-life phenomena are only approximately self-similar.
They converge to self-similar processes when a parameter included in the
model converges to infinity.

The fact that fractional Brownian motion is not a semi-martingale
when H ] 1/2 is established. This is of relevance to finance. A semi-mar-
tingale is roughly the sum of a process of bounded variation (for example
a smooth continuous function) and a martingale, which I will define. The
bounded variation process can be ignored when pricing a stock. The mar-
tingale component, however, is of great importance. Suppose {X(t), t \ 0}
represents the value of the stock. It is a martingale, if the conditional
expectation

E{X(t2) − X(t1) | X(s), 0 [ s [ t1}=0, t1 < t2, (9)

that is, if with knowledge of all information up to the present, the average
gain increase in the future is 0. Thus, a martingale is a model for a fair
game. Brownian motion, for example, is a martingale, and in fact,
Brownian motion is ubiquitous in finance. When the price process is a semi-
martingale then one cannot have arbitrage opportunities (possible gains
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with any risk of loss). Fractional Brownian motion with H ] 1/2 is neither
a martingale nor a semi-martingale. It can therefore not be used in finance
as a model for changes of stock prices. It is the local behavior of the frac-
tional Brownian motion paths and not the long-term dependence structure
of the process that is responsible for this. There are slight modifications of
fractional Brownian motion that make it a semi-martingale.

The authors also cover briefly stable processes and define the various
types of H-sssi stable processes (such as moving averages, harmonizable,
sub-Gaussian processes). In the stable case, the dependence structure
cannot be described by covariances because these are infinite. There are
partial descriptions of dependence, for example the ‘‘codifference’’ or the
‘‘covariation.’’ These reduce to the covariance when the process is Gaussian.

The book includes also a discussion of self-similar process whose
increments are independent but not necessarily stationary. The marginal
distribution of X(t) for a fixed t can be characterized. It belongs to the
so-called class of ‘‘selfdecomposable’’ distributions, defined in the book,
which is a more general class than the class of stable distributions. Unfor-
tunately, in contrast to the stable case, the finite-dimensional distributions
are not, in general, selfdecomposable.

The authors also discuss the sample path properties of H-sssi proces-
ses (e.g., Hölder continuity). They include a chapter on how to simulate
self-similar processes. A Gaussian sequence can be exactly simulated, for
example, by using the Durbin–Levinson algorithm. There are various
approximations for the simulation of fractional Brownian motion, some
use the fast Fourier transforms, other wavelets. A short chapter is devoted
to statistical estimation. It includes the historical ‘‘R/S statistic’’ (which is
very biased) and describes some maximum likelihood methods for estimat-
ing the exponent H. The final chapter, called ‘‘Extensions,’’ contains a brief
discussion on ‘‘operator selfsimilar’’ processes which take values in Rd and
where the constant a in (1) is replaced by a matrix. It also contains an
introduction to ‘‘semi-selfsimilar processes’’ where aH in (2) is replaced by
some arbitrary function of a (see Sato (7)).

The book is written in a rigorous mathematical way with ‘‘definition,’’
‘‘theorem,’’ etc. It contains a number of proofs, some of which are only
sketches. While most of the results are given without proof, a reference to
the original paper or to a book where the proof can be found is provided.
This way of writing is useful for someone who wants to get a general over-
view of the subject but at the same time wants facts that are stated in a
precise way.

The authors do not discuss in depth statistical issues related to the
detection of self-similarity and the estimation of H. Nor do they cover
practical applications, for example, to telecommunications, hydrology, or
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finance. This would not be possible in such a short book. The reader inter-
ested in these subjects can refer to Beran (1) which focuses on statistics,
to an applied overview article on statistical techniques by Taqqu and
Teverovsky, (10) to a review article on the ‘‘on-off ’’ models in telecommuni-
cations by Taqqu (9) and to two recent (edited) monographs.

The first monograph, Rangarajan and Ding, (5) contains articles among
others, by Mandelbrot on fractal sum of pulses, Stanley et al. on patterns
and correlations in economic phenomena, Gorenflo and Mainardi on frac-
tional diffusion processes, Silverberg and Verspagen on long-memory and
economic growth, Ivanov on heartbeat dynamics.

The second monograph is by Doukhan et al. (2) and is divided in two
parts. The first part contains an extensive introductory article on fractional
Brownian motion and long-range dependence, and articles involving the
probabilistic properties of self-similar processes including the diagrams
formulas referred to above, fractional calculus, and articles on statistics
(parametric, semiparametric, and nonparametric estimation of H). The
second part is devoted to applications and methodology and contains
articles on applications to data network traffic, finance, hydrology, turbu-
lence. The methodology articles describe and compare many methods
for simulating self-similar processes and for estimating H, including wave-
let methods. These two monographs complement nicely the book by
Embrechts and Maejima under review.

I would thus advise the reader interested in learning about self-similar
processes to read first the introductory articles on fractional Brownian motion
in these two monographs, then to turn to the book of Embrechts and Maejima
for a more extensive overview of the subject and finally to go back to the
monographs for more specialized articles.

The book of Embrechts and Maejima can be used as a text for a one-
semester course. It is geared toward mathematicians but anyone who has had
an introductory graduate course in probability can easily read it. It is nicely
written and provides a quick and excellent overview of the subject.
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